If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(17/9)-1/2n=1/6n+1
We move all terms to the left:
(17/9)-1/2n-(1/6n+1)=0
Domain of the equation: 2n!=0
n!=0/2
n!=0
n∈R
Domain of the equation: 6n+1)!=0We add all the numbers together, and all the variables
n∈R
-1/2n-(1/6n+1)+(+17/9)=0
We get rid of parentheses
-1/2n-1/6n-1+17/9=0
We calculate fractions
1224n^2/972n^2+(-486n)/972n^2+(-162n)/972n^2-1=0
We multiply all the terms by the denominator
1224n^2+(-486n)+(-162n)-1*972n^2=0
Wy multiply elements
1224n^2-972n^2+(-486n)+(-162n)=0
We get rid of parentheses
1224n^2-972n^2-486n-162n=0
We add all the numbers together, and all the variables
252n^2-648n=0
a = 252; b = -648; c = 0;
Δ = b2-4ac
Δ = -6482-4·252·0
Δ = 419904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{419904}=648$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-648)-648}{2*252}=\frac{0}{504} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-648)+648}{2*252}=\frac{1296}{504} =2+4/7 $
| v=2*7.50 | | 1/2(x+12)+21/2x=114 | | m^2+2m4=0 | | 14=s/10 | | -2(d-9)=-24 | | 30+52x=10-28x | | 3x^2-13x^2-10=0 | | 2,500+25x=1,250 | | 7(2+4)-x+4x=317 | | 3t-2=20- | | 6x=1000,1.67x= | | 2x-8=12.4 | | 11n+23=6n-4 | | 1.5x+2.5x-10=40+6 | | 17x+15=5x-9 | | 1,250+x(25)=2,00 | | 6r-9-5r-9=30 | | 0.14n+0.04(1200-n)=0.09(1200) | | 16=12n | | (6x-3)+(8x-5)=90 | | 245=125(w+15) | | 18=n/4+15 | | |6-2m|÷-4-7=-19 | | (6x-3)+(8x-5)=180 | | 172+3x=180 | | 18=n4+15 | | (6/8x)-10=(7/8x) | | 2(x+2)=2x=50+10+4 | | -17m-12=14-19m | | 5=s/6+8 | | 12.9r-10.67=14.17+14.9r+3.76 | | 5(p+6)=2(1+4p)-2 |