(17/60)*x=5

Simple and best practice solution for (17/60)*x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (17/60)*x=5 equation:



(17/60)*x=5
We move all terms to the left:
(17/60)*x-(5)=0
Domain of the equation: 60)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+17/60)*x-5=0
We multiply parentheses
17x^2-5=0
a = 17; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·17·(-5)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{85}}{2*17}=\frac{0-2\sqrt{85}}{34} =-\frac{2\sqrt{85}}{34} =-\frac{\sqrt{85}}{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{85}}{2*17}=\frac{0+2\sqrt{85}}{34} =\frac{2\sqrt{85}}{34} =\frac{\sqrt{85}}{17} $

See similar equations:

| 2x-7=5x+2-3x | | 0.20n+2=6 | | 24+(x=6) | | 5x+9=3x-21 | | 6x^2-49+34x=6x+10x^2 | | 10x-11=129 | | 7x^2-5x+4=5x^2 | | (3x-20)=(1.5x+10) | | 2x-7=5x+-3x | | √(3u-5)=√(5u-15) | | 6+10r+r-2=-7(3r-5)-4(1-8r) | | 7^4x-3=22 | | √3u-5=√5u-15 | | 5x-10-3x-4=18x-24+10 | | 18j-17j=7 | | 633x27= | | 4a+1+a–11=0 | | (7n-2)(n-1)=0 | | 17-6x=-128-10x | | 38-4x=5x-7 | | (w-1)÷4=(w+2)÷3 | | 3y+8+6y-1=90 | | 9x^2-12x+9=5x-4x^2 | | -8+2x=-16+12xx= | | 1x+0=x | | -7.8(x+6.5)=-25.72 | | 3.5x-x=15x-14.3 | | 2/3(x+6)=6 | | 6 = p/9 | | 3x^2-9=7x^2-12x | | 1b+1.5b+45+2b-90=540 | | -90(3-r)=45 |

Equations solver categories