(17+2w)(13+2w)-221=396

Simple and best practice solution for (17+2w)(13+2w)-221=396 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (17+2w)(13+2w)-221=396 equation:



(17+2w)(13+2w)-221=396
We move all terms to the left:
(17+2w)(13+2w)-221-(396)=0
We add all the numbers together, and all the variables
(2w+17)(2w+13)-221-396=0
We add all the numbers together, and all the variables
(2w+17)(2w+13)-617=0
We multiply parentheses ..
(+4w^2+26w+34w+221)-617=0
We get rid of parentheses
4w^2+26w+34w+221-617=0
We add all the numbers together, and all the variables
4w^2+60w-396=0
a = 4; b = 60; c = -396;
Δ = b2-4ac
Δ = 602-4·4·(-396)
Δ = 9936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9936}=\sqrt{144*69}=\sqrt{144}*\sqrt{69}=12\sqrt{69}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{69}}{2*4}=\frac{-60-12\sqrt{69}}{8} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{69}}{2*4}=\frac{-60+12\sqrt{69}}{8} $

See similar equations:

| (17+2w)(13+2w)+221=396 | | 24x-8=4x+13 | | 10d+10(9)=9 | | 1.8q-1.3-5.2q=2.4q-1.3 | | -4(4n+8)=-96 | | 19=41-4(-2-2w) | | n(n+1)/3=297 | | 7w+3=3W+9 | | n^2+n+297=0 | | 4n-6(2+8n)=120 | | 2^(-2x)=0.3 | | 3(2y-3)=21 | | 8y2+4y=0 | | 6+3r=2(r-3)+7r | | 7a×3=21 | | 2(a+4)=24 | | 1.5(2d-1)=0.5 | | -2/7+y=-5/6 | | -2(1-4b)=-6b-16 | | (4x-9)(3x+11)=0 | | 3k-8=-3(4+7k)+4 | | 10x-3+8x=25 | | 6z=24-z | | 9x2-33x+17=0 | | -8=8(-5+x) | | 18-8x+6=5x+32 | | (x+1)(x+3)=x | | F(-2)=5-3x | | 20-4x(-2)=1 | | 1.38x=0.3-x | | (1.01)^x=100 | | x-503=10^3+503 |

Equations solver categories