If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(168x^2)/100=3.36
We move all terms to the left:
(168x^2)/100-(3.36)=0
We add all the numbers together, and all the variables
168x^2/100-3.36=0
We multiply all the terms by the denominator
168x^2-(3.36)*100=0
We add all the numbers together, and all the variables
168x^2-336=0
a = 168; b = 0; c = -336;
Δ = b2-4ac
Δ = 02-4·168·(-336)
Δ = 225792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{225792}=\sqrt{112896*2}=\sqrt{112896}*\sqrt{2}=336\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-336\sqrt{2}}{2*168}=\frac{0-336\sqrt{2}}{336} =-\frac{336\sqrt{2}}{336} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+336\sqrt{2}}{2*168}=\frac{0+336\sqrt{2}}{336} =\frac{336\sqrt{2}}{336} =\sqrt{2} $
| 4(3x+2)-3(3x-1)=35 | | 35(x+5)=48 | | 20x-2+39x-2=180 | | z/2.45=7.98 | | 4x-3/9=3x-4/5 | | -3x^2=-72 | | 0.30+14p=0.45=10p | | (1+5h)(5)= | | 3x+10+9x+50=180 | | (2x-5)=70 | | 20x-2=39x-2 | | 12x+30=22x | | -2q-10=-4q+8 | | -5t^2+80t+12=0 | | 4(4=7k)=-208 | | 3y−6=6y | | 20x-2=39x-2. | | 15(x+8)=90 | | 5x−1=−2x+20,x | | 4x-3/9=3×-4/5 | | 180/5x=91 | | 2/3+n=1 | | 2x-6=x+1(3) | | 5(2p-2)=10 | | 10x+5(2x+10=65 | | -2(x-10)=-2x+12+8x | | 5v-1=-4v-10+10v | | 10x-3x+7=2-+7x | | (14x+6)+52=90 | | 10-0.45p=14-0.30p | | -16r+10=10-16r | | 2q+32 =81 |