If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1600+18x)(x-15)=(1200+22x)(x-20)
We move all terms to the left:
(1600+18x)(x-15)-((1200+22x)(x-20))=0
We add all the numbers together, and all the variables
(18x+1600)(x-15)-((22x+1200)(x-20))=0
We multiply parentheses ..
(+18x^2-270x+1600x-24000)-((22x+1200)(x-20))=0
We calculate terms in parentheses: -((22x+1200)(x-20)), so:We get rid of parentheses
(22x+1200)(x-20)
We multiply parentheses ..
(+22x^2-440x+1200x-24000)
We get rid of parentheses
22x^2-440x+1200x-24000
We add all the numbers together, and all the variables
22x^2+760x-24000
Back to the equation:
-(22x^2+760x-24000)
18x^2-22x^2-270x+1600x-760x-24000+24000=0
We add all the numbers together, and all the variables
-4x^2+570x=0
a = -4; b = 570; c = 0;
Δ = b2-4ac
Δ = 5702-4·(-4)·0
Δ = 324900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324900}=570$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(570)-570}{2*-4}=\frac{-1140}{-8} =142+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(570)+570}{2*-4}=\frac{0}{-8} =0 $
| (2x-3)x(x-1)=0 | | (x-1)(2x+5)=(x-1)(5x+4) | | 2•(1-x)=1/3•(11-6x) | | 2(3-5x)=4(1-x) | | x+16=12x | | z–5=15 | | x+16=12× | | x^2-10x=-78 | | 6(5x-1)=2x-13 | | x^2-10x+78=0 | | 5x+3−3x=11 | | x+(x/28)/90=180 | | 3q=6-3q | | 2(x+3)=10= | | x+1-1=5-1 | | 3(2t+5)=5t+20 | | 20s+6=110 | | Y=0.10x+x | | 2/9=n/36n= | | 2,5x+3(0,5-1,8)=3,8 | | 4x−11=2(x−3x)+13 | | 3(4x-8)=3x-6 | | -12x-5=-8x+16 | | 4–x/3=1 | | n/24=11/8 | | 2/9=n/36 | | -(2x+7)-9=1+(2x-1) | | −2/5x+20=1/5x−4 | | 4-(x+5)-(-11+x)=2 | | Y^2=2^y | | x-x–6=0*1 | | 5+3x=29-5x |