(16+2x)(12+2x)+192=396

Simple and best practice solution for (16+2x)(12+2x)+192=396 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16+2x)(12+2x)+192=396 equation:



(16+2x)(12+2x)+192=396
We move all terms to the left:
(16+2x)(12+2x)+192-(396)=0
We add all the numbers together, and all the variables
(2x+16)(2x+12)+192-396=0
We add all the numbers together, and all the variables
(2x+16)(2x+12)-204=0
We multiply parentheses ..
(+4x^2+24x+32x+192)-204=0
We get rid of parentheses
4x^2+24x+32x+192-204=0
We add all the numbers together, and all the variables
4x^2+56x-12=0
a = 4; b = 56; c = -12;
Δ = b2-4ac
Δ = 562-4·4·(-12)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-16\sqrt{13}}{2*4}=\frac{-56-16\sqrt{13}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+16\sqrt{13}}{2*4}=\frac{-56+16\sqrt{13}}{8} $

See similar equations:

| 2x2-10x+5=0 | | -7w+5(w-7)=-21 | | 3x^3+4x^2-7x-2=0 | | 90x+40=410 | | 4y^2=-y+3 | | 9(u-7)=90 | | 4z+8=9z-14 | | 3(q-8)=27 | | 7x34=209 | | 1x/9=14 | | 190=-16t^2 | | 12=6x-4=5=2(3x-1) | | 16-3u=5u | | -10+x+4–5=7x—5 | | -10m=12m+4 | | 5x=4x2+6=0 | | 9+8x=26+x | | (2)(x-1)/9-6+2x/3=4 | | x=4.75-1.5*1+1/2 | | (2)(x-1)÷9-6+2x÷3=4 | | 2x–8x–10=32 | | 2x=14-5=7+12x | | -31/3=11/2g | | (−9*f−2)*(−7*f+7)*(−4*f−6)=0 | | -10p-4=22 | | 2x+30=12x-5 | | (−9f−2)(−7f+7)(−4f−6)=0 | | 2x-12=9x+4 | | (3x-2)^2=23 | | 20n=-2n-4-4n | | (8x+8)=(7x-8) | | 12x-2x=2x+8 |

Equations solver categories