If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(134/21)k=40/3
We move all terms to the left:
(134/21)k-(40/3)=0
Domain of the equation: 21)k!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
(+134/21)k-(+40/3)=0
We multiply parentheses
134k^2-(+40/3)=0
We get rid of parentheses
134k^2-40/3=0
We multiply all the terms by the denominator
134k^2*3-40=0
Wy multiply elements
402k^2-40=0
a = 402; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·402·(-40)
Δ = 64320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64320}=\sqrt{64*1005}=\sqrt{64}*\sqrt{1005}=8\sqrt{1005}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1005}}{2*402}=\frac{0-8\sqrt{1005}}{804} =-\frac{8\sqrt{1005}}{804} =-\frac{2\sqrt{1005}}{201} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1005}}{2*402}=\frac{0+8\sqrt{1005}}{804} =\frac{8\sqrt{1005}}{804} =\frac{2\sqrt{1005}}{201} $
| x-61/7=4 | | 5/n=20/n | | -21=3(x-77) | | 588=(3x-7)(x+11) | | .02x+8.87=11.03 | | 19x-7=14x+3 | | b+9=6+28 | | 2/9=y-2/3 | | 8=y-7y | | x+87/7=6 | | -7(-3+5y)+y=-13 | | -7(-3+5y)=-13 | | 2m2+8m-10=3 | | -6(x+10)=30 | | -(13x-7)=124 | | 2x+(4x-6)=6 | | 10(-3-2t)+10-2(6t-13)=·0 | | 544.50=4.5x² | | .3x=210 | | a^2-B^2=648 | | 2(r-93)=-86 | | 3=(g-4-5) | | 12+4r=-4 | | 68+2x=90 | | 0.2x+8.87=11.03 | | (31/8)/(x-(47/28))=(17/18)+(15/6) | | 0x7=0 | | x+18+x-10=90 | | x5=0.15 | | 3w+4=14+2w | | 3n−2(−2−7n)=4(1−8n) | | 0.8(4.375)=0.625(1x) |