If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (13 + 26x)(9x + 12) = 0 Reorder the terms: (13 + 26x)(12 + 9x) = 0 Multiply (13 + 26x) * (12 + 9x) (13(12 + 9x) + 26x * (12 + 9x)) = 0 ((12 * 13 + 9x * 13) + 26x * (12 + 9x)) = 0 ((156 + 117x) + 26x * (12 + 9x)) = 0 (156 + 117x + (12 * 26x + 9x * 26x)) = 0 (156 + 117x + (312x + 234x2)) = 0 Combine like terms: 117x + 312x = 429x (156 + 429x + 234x2) = 0 Solving 156 + 429x + 234x2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '39'. 39(4 + 11x + 6x2) = 0 Factor a trinomial. 39((4 + 3x)(1 + 2x)) = 0 Ignore the factor 39.Subproblem 1
Set the factor '(4 + 3x)' equal to zero and attempt to solve: Simplifying 4 + 3x = 0 Solving 4 + 3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + 3x = 0 + -4 Combine like terms: 4 + -4 = 0 0 + 3x = 0 + -4 3x = 0 + -4 Combine like terms: 0 + -4 = -4 3x = -4 Divide each side by '3'. x = -1.333333333 Simplifying x = -1.333333333Subproblem 2
Set the factor '(1 + 2x)' equal to zero and attempt to solve: Simplifying 1 + 2x = 0 Solving 1 + 2x = 0 Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + 2x = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2x = 0 + -1 2x = 0 + -1 Combine like terms: 0 + -1 = -1 2x = -1 Divide each side by '2'. x = -0.5 Simplifying x = -0.5Solution
x = {-1.333333333, -0.5}
| 525+.21f=850 | | m=12.75+3.2(20) | | x^3-15x^2+62x-48=0 | | 2+5x-4x=-5-8 | | 5x+6=-59-8 | | 5z-10=z+46 | | 38-5x=10-9x | | -3+8x-7x=7-5 | | 36-4x=12-10x | | -4=-2x-13 | | -16+4x=-24+9x | | 30-2x=20+8x | | 2y+32=2(2y-4) | | 0(-15)= | | 7(3x+1)=10(x-1) | | 7y=3x+14 | | -7-2=10n | | 6x+9=-36-3x | | 5x+(9x+-5)=7(x+7) | | 15x-6=-20x-12 | | (3x+4)(x-5)= | | 6x=-7-7x | | -112=-4(4v+4) | | 5b+6w=126 | | 12x+8=11(x-6)+2 | | -4(r+2)=-62 | | 11=2d+17 | | -6(4-r)=30 | | -9x^2-6x+8=0 | | 5x+(9x-5)=7(x+7) | | 5x=3y+1 | | 68.6=7(m+2.1) |