(12x-23)(71-x)=180

Simple and best practice solution for (12x-23)(71-x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x-23)(71-x)=180 equation:



(12x-23)(71-x)=180
We move all terms to the left:
(12x-23)(71-x)-(180)=0
We add all the numbers together, and all the variables
(12x-23)(-1x+71)-180=0
We multiply parentheses ..
(-12x^2+852x+23x-1633)-180=0
We get rid of parentheses
-12x^2+852x+23x-1633-180=0
We add all the numbers together, and all the variables
-12x^2+875x-1813=0
a = -12; b = 875; c = -1813;
Δ = b2-4ac
Δ = 8752-4·(-12)·(-1813)
Δ = 678601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{678601}=\sqrt{49*13849}=\sqrt{49}*\sqrt{13849}=7\sqrt{13849}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(875)-7\sqrt{13849}}{2*-12}=\frac{-875-7\sqrt{13849}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(875)+7\sqrt{13849}}{2*-12}=\frac{-875+7\sqrt{13849}}{-24} $

See similar equations:

| 13x+94=180 | | 20=f/25 | | 2.3-6.9p=-3.6p | | 5a-2=4a+2 | | -4(x=3)=-28 | | x*1.59-x=11 | | 10x+1=5x- | | x*1.26-x=13 | | 4(x-1)=2x=6x+5 | | x*1.67-x=3 | | x*1.85-x=3 | | x*1.58-x=15 | | 3^(x)=1594323 | | 4x=3x=28 | | (6x)+4=(14x)-12 | | m+44/7=9 | | (5x)-65=180 | | (3x+70)=(2x-5) | | 7x+3x+15+25=180 | | 3(2f=5)=4(7-f) | | x*1.57-x=3 | | (2x+24)=(3x+12) | | 2.2360679775x2.2360679775=5.000000000001x | | 9.2-5y+3.4=1.4+3y | | 5z-1/2-6z=7/8-3z | | 3t+6t-7=5t+1 | | -3/8+2s=1/4-3s | | 6r+4/3=4r | | 7q-2.3=4q+1.6 | | 3p=5p-2.8 | | -2x+3=1-6x | | (4n/22)+(8n-10)=180 |

Equations solver categories