If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (12x + 23)(3x + 5) = 0 Reorder the terms: (23 + 12x)(3x + 5) = 0 Reorder the terms: (23 + 12x)(5 + 3x) = 0 Multiply (23 + 12x) * (5 + 3x) (23(5 + 3x) + 12x * (5 + 3x)) = 0 ((5 * 23 + 3x * 23) + 12x * (5 + 3x)) = 0 ((115 + 69x) + 12x * (5 + 3x)) = 0 (115 + 69x + (5 * 12x + 3x * 12x)) = 0 (115 + 69x + (60x + 36x2)) = 0 Combine like terms: 69x + 60x = 129x (115 + 129x + 36x2) = 0 Solving 115 + 129x + 36x2 = 0 Solving for variable 'x'. Factor a trinomial. (23 + 12x)(5 + 3x) = 0Subproblem 1
Set the factor '(23 + 12x)' equal to zero and attempt to solve: Simplifying 23 + 12x = 0 Solving 23 + 12x = 0 Move all terms containing x to the left, all other terms to the right. Add '-23' to each side of the equation. 23 + -23 + 12x = 0 + -23 Combine like terms: 23 + -23 = 0 0 + 12x = 0 + -23 12x = 0 + -23 Combine like terms: 0 + -23 = -23 12x = -23 Divide each side by '12'. x = -1.916666667 Simplifying x = -1.916666667Subproblem 2
Set the factor '(5 + 3x)' equal to zero and attempt to solve: Simplifying 5 + 3x = 0 Solving 5 + 3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + 3x = 0 + -5 Combine like terms: 5 + -5 = 0 0 + 3x = 0 + -5 3x = 0 + -5 Combine like terms: 0 + -5 = -5 3x = -5 Divide each side by '3'. x = -1.666666667 Simplifying x = -1.666666667Solution
x = {-1.916666667, -1.666666667}
| x^3+2(x+3)=3x+6 | | 3(x+1)=-2x+5 | | X-57+2x=180 | | 8(4)+4(2)=40 | | X^2+12-4=9 | | X^2+2y=3x+6 | | -315+35x+-104x^2+48x^3=0 | | 2x+5+x-6+3x= | | (6x^2y^2+4y^4)dx+(2x^3+4xy^3)dy=0 | | 8y+4y=40 | | x^2y^2-2xy+x=2 | | -2(-8x+5)-3x=-88 | | 144x^3-312x^2+105x=945 | | 2+3i=x+3i | | -7(8p-2)=238 | | 8f=54-f | | 9+10n=1 | | 6=-3w+6(w+3) | | 8x-1=2(3+2x) | | 8-3b+1=-6 | | 3n^3-8n+4= | | 3y+8(y-6)=7 | | 25x+24y+23z=1529 | | 12=-4u+8(u+2) | | -7+8b=-39 | | x+3x+6x-7=180 | | 8y=4x+.40 | | 2h-5=37 | | (65-x)*24+(65-y)*23=1526 | | 25=4v+1 | | -8+3x+6=6x-3-x | | f(0.3)=0.8 |