(12x+-37)(9x+5)=180

Simple and best practice solution for (12x+-37)(9x+5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x+-37)(9x+5)=180 equation:



(12x+-37)(9x+5)=180
We move all terms to the left:
(12x+-37)(9x+5)-(180)=0
We add all the numbers together, and all the variables
(12x-37)(9x+5)-180=0
We multiply parentheses ..
(+108x^2+60x-333x-185)-180=0
We get rid of parentheses
108x^2+60x-333x-185-180=0
We add all the numbers together, and all the variables
108x^2-273x-365=0
a = 108; b = -273; c = -365;
Δ = b2-4ac
Δ = -2732-4·108·(-365)
Δ = 232209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232209}=\sqrt{9*25801}=\sqrt{9}*\sqrt{25801}=3\sqrt{25801}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-273)-3\sqrt{25801}}{2*108}=\frac{273-3\sqrt{25801}}{216} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-273)+3\sqrt{25801}}{2*108}=\frac{273+3\sqrt{25801}}{216} $

See similar equations:

| (18-x)=26-3x | | 3-2(x-3)=8x-1 | | 4x^2-96x+567=0 | | 0.5(6x-2)=13-4x | | 1/2(6x-2)=13-4x | | 50+13.25=25.75x | | X÷y=0.057 | | 5x/3x=18 | | X=1.12+.5z | | -n/7=-49 | | 1=2(3g-2)=8/2 | | ∣x−6∣=9 | | 5x+7=4x+17 | | y/24=3/8 | | (5x+2)+(8x+-25=90 | | 5*3(x+4)-2(1-x)-x-15=14x+55 | | (5x+2)(8x+-25)=90 | | (5x+2)=(8x+-25) | | 12x+-37=9x+5 | | 1(2x+-37)(9x+5)=90 | | 12x+-379x+5=90 | | 12x+-379x+5=180 | | 5x+2=8x+-25 | | 4x6*x-4=36 | | 5x+2+8x+-25=90 | | 9x-4=2x-5 | | 10m+6=-4 | | -4(-6x+13)=12 | | x^2-7x-7*42=0 | | −3∣−x−6∣=5∣x−2∣ | | 2x+15=22+x | | y*3=3y+12 |

Equations solver categories