(12x)2+4=(5x)2+8

Simple and best practice solution for (12x)2+4=(5x)2+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x)2+4=(5x)2+8 equation:



(12x)2+4=(5x)2+8
We move all terms to the left:
(12x)2+4-((5x)2+8)=0
We add all the numbers together, and all the variables
-(+5x^2+8)+12x2+4=0
We add all the numbers together, and all the variables
12x^2-(+5x^2+8)+4=0
We get rid of parentheses
12x^2-5x^2-8+4=0
We add all the numbers together, and all the variables
7x^2-4=0
a = 7; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·7·(-4)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*7}=\frac{0-4\sqrt{7}}{14} =-\frac{4\sqrt{7}}{14} =-\frac{2\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*7}=\frac{0+4\sqrt{7}}{14} =\frac{4\sqrt{7}}{14} =\frac{2\sqrt{7}}{7} $

See similar equations:

| 8(b-7)+2=-46 | | 18+3(m+12)=0 | | 6-2a=-3a-4 | | x/6=8/18 | | -3x+3=2x-1 | | x=-4(0.5) | | 2x(4+6x)=180 | | 2.5x+0.5=2x-3.5 | | 4(2x+3)-2(3x-4)=16 | | -20x+8=-6x+-2 | | (Y+4)(y-2)=24 | | x-2.5=3x+1.5 | | 2(4x+7)+5x+10=180 | | 13+2x=4+x | | -11x-10=-10x-9 | | 2x−5x−16−−3−3x2=1 | | 2(5x+3)=5x-34 | | 30+2x÷12+5x=100÷145 | | 3500=-50x+5000 | | -8x-3=6x-4 | | 3n19=5 | | x-0,05x=6080 | | x/(84+x)=5/15 | | x/7=14-7 | | -x2-9x+252=0 | | X+0.5*x-99=0 | | 0.4x+4.8=6 | | X+1/2x-99=0 | | 4c=3c-4 | | x+0.15x=10000 | | 3b-8=32 | | 6x+8=31-4x |

Equations solver categories