(123)10=(x)2

Simple and best practice solution for (123)10=(x)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (123)10=(x)2 equation:



(123)10=(x)2
We move all terms to the left:
(123)10-((x)2)=0
determiningTheFunctionDomain -x2+12310=0
We add all the numbers together, and all the variables
-1x^2+12310=0
a = -1; b = 0; c = +12310;
Δ = b2-4ac
Δ = 02-4·(-1)·12310
Δ = 49240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49240}=\sqrt{4*12310}=\sqrt{4}*\sqrt{12310}=2\sqrt{12310}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{12310}}{2*-1}=\frac{0-2\sqrt{12310}}{-2} =-\frac{2\sqrt{12310}}{-2} =-\frac{\sqrt{12310}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{12310}}{2*-1}=\frac{0+2\sqrt{12310}}{-2} =\frac{2\sqrt{12310}}{-2} =\frac{\sqrt{12310}}{-1} $

See similar equations:

| −60x2−36x=0 | | −16x2+20x=0 | | 11+x/4=-1 | | 15x2−375=0 | | (5x+55)+(2x+100)=180° | | -2k+1=5 | | x/2+40=80 | | 15-6x=2x-25 | | 2x+8=4(x-1.5) | | 2x2+120=0 | | 25+01.12x=0.14x | | n/5-3=-5 | | 18x-20=4x-50 | | 8x-18=28 | | 2x+20=-4x-25 | | 5x-10=3(x-2 | | 1/4x-x=1/3*15+6 | | 2x+20=2x-25 | | 4×(3-1,2y)+3y=12 | | 4×(3-1.2y)+3y=12 | | 11j=3 | | j11=3 | | -9/22=k/22 | | v(6v-5)(3v+5)=0 | | 9z+20=92 | | 5(0.9)^x=58 | | c/2–2=3 | | 5z+9/2=3z+1 | | 3x-42x+58=145+x-70 | | 0=-v+-8 | | 10+y=2y+6 | | -t/10+74=65 |

Equations solver categories