(12/18)+(1/18)r=1

Simple and best practice solution for (12/18)+(1/18)r=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12/18)+(1/18)r=1 equation:



(12/18)+(1/18)r=1
We move all terms to the left:
(12/18)+(1/18)r-(1)=0
Domain of the equation: 18)r!=0
r!=0/1
r!=0
r∈R
determiningTheFunctionDomain (1/18)r-1+(12/18)=0
We add all the numbers together, and all the variables
(+1/18)r-1+(+12/18)=0
We multiply parentheses
r^2-1+(+12/18)=0
We get rid of parentheses
r^2-1+12/18=0
We multiply all the terms by the denominator
r^2*18+12-1*18=0
We add all the numbers together, and all the variables
r^2*18-6=0
Wy multiply elements
18r^2-6=0
a = 18; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·18·(-6)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*18}=\frac{0-12\sqrt{3}}{36} =-\frac{12\sqrt{3}}{36} =-\frac{\sqrt{3}}{3} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*18}=\frac{0+12\sqrt{3}}{36} =\frac{12\sqrt{3}}{36} =\frac{\sqrt{3}}{3} $

See similar equations:

| x+10=5x-60 | | 16x+43=17 | | 7m-2(2+m)=5m-(m-4) | | 403*x=1463 | | 209*x=5000000 | | 7r+7=5r-7 | | 2t-3=t+2 | | -35/11=-49/88q | | 2d-20=-6 | | 7a+4=a+18 | | -3/14×x=5/12 | | 13x+20=12x | | 3.07+x=3.5 | | 2*x=5000000 | | 4x-9=11+2x | | a^2-2a=10 | | -4x-14=8 | | f/5-2=8 | | x+(18x/100)=2460960 | | 3f+4–=2f+6 | | 3x/10=21 | | a/5+15=50 | | x-(10x/100)=2214864 | | 13.74=x+4x+(x-58) | | 0.5x3=15 | | 11x+24=5x+168 | | 3x-4x=8-x | | x+(18x/100)=2436350 | | (-2)x=70 | | 12-x=5-7 | | 4/5+2x=3/2 | | 3x=-180 |

Equations solver categories