(12+x)(120+3x)=672

Simple and best practice solution for (12+x)(120+3x)=672 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12+x)(120+3x)=672 equation:



(12+x)(120+3x)=672
We move all terms to the left:
(12+x)(120+3x)-(672)=0
We add all the numbers together, and all the variables
(x+12)(3x+120)-672=0
We multiply parentheses ..
(+3x^2+120x+36x+1440)-672=0
We get rid of parentheses
3x^2+120x+36x+1440-672=0
We add all the numbers together, and all the variables
3x^2+156x+768=0
a = 3; b = 156; c = +768;
Δ = b2-4ac
Δ = 1562-4·3·768
Δ = 15120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15120}=\sqrt{144*105}=\sqrt{144}*\sqrt{105}=12\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-12\sqrt{105}}{2*3}=\frac{-156-12\sqrt{105}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+12\sqrt{105}}{2*3}=\frac{-156+12\sqrt{105}}{6} $

See similar equations:

| -w+69=209 | | 8−5=(3x−7) | | -1-(4z+3)=6 | | 11=-v+272 | | 187-y=259 | | 7(x+4)=4(-x-9x) | | 6-7x=x+12 | | 710-45x=850-65x | | 277=47-u | | -u+162=98 | | x/5−11=−5 | | 9=224-v | | -2*9/5+y=-2 | | 79=u=65 | | 5x+4(-2+2)=31 | | 8k-14-3k=7k+4+4 | | 15x-(4x-7)=51 | | (6x-2)=(4x-1) | | 23=-5+v/4 | | 15x+-6=-56 | | a+90+57=180 | | 17=x/5-8 | | 2x^2-16x+32=200 | | -1.3=u/6+8.3 | | w/4+1=-4.12 | | b2+√3b−18=0 | | 1.4=39.8-3y | | -1.5+v/7=-12.7 | | x/5.12+5=7 | | 4x-3(3x-1)=-2 | | 20*x*(1-x)=1 | | x/5.2+5=7 |

Equations solver categories