(10x-4)(3x+8)=-122x-33

Simple and best practice solution for (10x-4)(3x+8)=-122x-33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x-4)(3x+8)=-122x-33 equation:



(10x-4)(3x+8)=-122x-33
We move all terms to the left:
(10x-4)(3x+8)-(-122x-33)=0
We get rid of parentheses
(10x-4)(3x+8)+122x+33=0
We multiply parentheses ..
(+30x^2+80x-12x-32)+122x+33=0
We get rid of parentheses
30x^2+80x-12x+122x-32+33=0
We add all the numbers together, and all the variables
30x^2+190x+1=0
a = 30; b = 190; c = +1;
Δ = b2-4ac
Δ = 1902-4·30·1
Δ = 35980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35980}=\sqrt{4*8995}=\sqrt{4}*\sqrt{8995}=2\sqrt{8995}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(190)-2\sqrt{8995}}{2*30}=\frac{-190-2\sqrt{8995}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(190)+2\sqrt{8995}}{2*30}=\frac{-190+2\sqrt{8995}}{60} $

See similar equations:

| 4(g−791)=520 | | (3)/(4)x+-((2)/(3))=(7)/(12) | | 61=-4x-3x+5 | | 3x+5x-11=2(4x-1)-9 | | 10+13u=153 | | 2079/11=t | | v7+ –46=–52 | | 12x+1-8.5x=3.5x=1 | | 5x-40=15 | | 80+x=(3x-22)=180 | | 7/4q=-15 | | 5x-3+5x=117 | | -x^2-196+35x=0 | | v/7+–46=–52 | | v/7+ –46=–52 | | -3.18=h+12.63 | | 5.80-c=33.19 | | 3^2x=27^x-4 | | 8(2x-4)=8x+8x-6 | | 5(x-3)+11x=0.3(15x-3) | | 5x+5=-150 | | 12n=3.4-8 | | 5(y+25=-13 | | 11.6=d+9.6 | | 3(-4y)-2y=-7 | | 7x2+1=29. | | t=−16t2+15t+12 | | 4.6x-1=1-6x | | x=x/4+10x=-2 | | x/3+180=249 | | 6x-3+8=0 | | x=x/4+10 |

Equations solver categories