(10x+8/x)+18=10*8/x+x

Simple and best practice solution for (10x+8/x)+18=10*8/x+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x+8/x)+18=10*8/x+x equation:



(10x+8/x)+18=10*8/x+x
We move all terms to the left:
(10x+8/x)+18-(10*8/x+x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x+x)!=0
x∈R
We add all the numbers together, and all the variables
(+10x+8/x)-(+x+10*8/x)+18=0
We get rid of parentheses
10x+8/x-x-10*8/x+18=0
We multiply all the terms by the denominator
10x*x-x*x+18*x+8-10*8=0
We add all the numbers together, and all the variables
18x+10x*x-x*x-72=0
Wy multiply elements
10x^2-1x^2+18x-72=0
We add all the numbers together, and all the variables
9x^2+18x-72=0
a = 9; b = 18; c = -72;
Δ = b2-4ac
Δ = 182-4·9·(-72)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2916}=54$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-54}{2*9}=\frac{-72}{18} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+54}{2*9}=\frac{36}{18} =2 $

See similar equations:

| -8.3-3x-7.4-x=-3x-11.4 | | r2+10r=0 | | 9x-1=5x+17 | | 8-(2z-8)=1-3z | | n+6=5.3 | | 354=m-72 | | 10x²+2x=x | | x-36=x/7 | | 9+9+9=x9 | | 5(x+2)=-5x+2 | | 12x=-100 | | x=x/7-36 | | 3(4g×6)=2(6g+9) | | 2x+5x=6x+3x | | -8(z+3)+3(4z-4)=3(z-3)+10 | | 2x-1/5=x+1/2 | | 4/7x-13/30=-3/7x-3/5 | | |1-2x|=7 | | 7z+9-3z=7+3z+3 | | 7z-5=8z-2 | | x+3/2=5-x/4 | | 5x+2=5x-x | | 14^3x-1=28 | | y/10=18+y | | 3p4×=2p5 | | 3p4=×2p5 | | 3/5m+2/5m=3 | | 18+y=1/10y | | 2x+2x=x-8 | | 1/10y=18+y | | 5-1/3k=11 | | 2/3(*)x=3/2 |

Equations solver categories