(10x+5/3x-2)-1=7x+7/3x-2

Simple and best practice solution for (10x+5/3x-2)-1=7x+7/3x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x+5/3x-2)-1=7x+7/3x-2 equation:



(10x+5/3x-2)-1=7x+7/3x-2
We move all terms to the left:
(10x+5/3x-2)-1-(7x+7/3x-2)=0
Domain of the equation: 3x-2)!=0
x∈R
We get rid of parentheses
10x+5/3x-7x-7/3x-2+2-1=0
We multiply all the terms by the denominator
10x*3x-7x*3x-2*3x+2*3x-1*3x+5-7=0
We add all the numbers together, and all the variables
10x*3x-7x*3x-2*3x+2*3x-1*3x-2=0
Wy multiply elements
30x^2-21x^2-6x+6x-3x-2=0
We add all the numbers together, and all the variables
9x^2-3x-2=0
a = 9; b = -3; c = -2;
Δ = b2-4ac
Δ = -32-4·9·(-2)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-9}{2*9}=\frac{-6}{18} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+9}{2*9}=\frac{12}{18} =2/3 $

See similar equations:

| 23=-5+4v | | 2y°=90° | | 2x-4x-10=30 | | -82=2x+7x-10 | | 23-3t=7 | | -3=3t-5.5t | | -6=3x=6 | | -5(k-95)=10 | | -2(2+5x)=-54 | | X2+(22-x)2=250 | | 96=8(p+3) | | x+8+7-x=8 | | 31y=-3-15 | | .5x+4=2(x+3) | | 2b2-32=0 | | 5t-3=3t-5.5t-3=3t-5 | | a2-64=0 | | r2-144=0 | | n/9+4=14 | | x2-529=0 | | 2x+4/7=6 | | 4+m/3=17 | | 3(t-3)=5(2t-1( | | d/2+4=11 | | -11x^2+490x+3000=0 | | 2y=9+5 | | 19x-x2=60 | | 50c+125=4725 | | 567=88.768968756987906+r | | t-3/2+t+3/4=8t/3+2 | | 567=88.906+r | | 5x+10+62=18x+11 |

Equations solver categories