(100+x)(150+x)=18,000

Simple and best practice solution for (100+x)(150+x)=18,000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (100+x)(150+x)=18,000 equation:



(100+x)(150+x)=18.000
We move all terms to the left:
(100+x)(150+x)-(18.000)=0
We add all the numbers together, and all the variables
(x+100)(x+150)-18=0
We multiply parentheses ..
(+x^2+150x+100x+15000)-18=0
We get rid of parentheses
x^2+150x+100x+15000-18=0
We add all the numbers together, and all the variables
x^2+250x+14982=0
a = 1; b = 250; c = +14982;
Δ = b2-4ac
Δ = 2502-4·1·14982
Δ = 2572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2572}=\sqrt{4*643}=\sqrt{4}*\sqrt{643}=2\sqrt{643}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-2\sqrt{643}}{2*1}=\frac{-250-2\sqrt{643}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+2\sqrt{643}}{2*1}=\frac{-250+2\sqrt{643}}{2} $

See similar equations:

| 2(3x-6)=18+2x | | x/7-3x/14-5-4=0 | | 5x+9=×-29 | | 2(5x+7)=-19+23 | | |x+7|=-1 | | 2(f+3)=47 | | 3+y^2=6 | | c9.1=7.2 | | 10.95x+12.57=89.22 | | -3(4x-10)=16-8x | | -2-6p=p-2-7p | | 4(x-4)-3=6x-13 | | 5x²-6=14 | | -3x+10=9x-44 | | 9x-6=12x+18 | | -2(2x-1)+2=4x+4 | | x–21=-15 | | 4t-3t-1=11 | | -2(x-3)÷5=4 | | -5+23x+55=32x+5 | | w-3=17 | | x/7-4=3x/14+5 | | 4x(x+5)-11=16x+17x+7 | | -v+-4+5=4v+1-5v | | 7h-6h=-19 | | 12-6n=4n-8 | | An=11/8+1/2n | | 18f+7=19f | | 0.08s=6.00 | | .5z+4=-14 | | -6s+16=9s-14 | | 3x=257 |

Equations solver categories