(100+w)(150+w)=2(100)(150)

Simple and best practice solution for (100+w)(150+w)=2(100)(150) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (100+w)(150+w)=2(100)(150) equation:



(100+w)(150+w)=2(100)(150)
We move all terms to the left:
(100+w)(150+w)-(2(100)(150))=0
determiningTheFunctionDomain (100+w)(150+w)-2100150=0
We add all the numbers together, and all the variables
(w+100)(w+150)-2100150=0
We multiply parentheses ..
(+w^2+150w+100w+15000)-2100150=0
We get rid of parentheses
w^2+150w+100w+15000-2100150=0
We add all the numbers together, and all the variables
w^2+250w-2085150=0
a = 1; b = 250; c = -2085150;
Δ = b2-4ac
Δ = 2502-4·1·(-2085150)
Δ = 8403100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8403100}=\sqrt{100*84031}=\sqrt{100}*\sqrt{84031}=10\sqrt{84031}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-10\sqrt{84031}}{2*1}=\frac{-250-10\sqrt{84031}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+10\sqrt{84031}}{2*1}=\frac{-250+10\sqrt{84031}}{2} $

See similar equations:

| Q+10=n25 | | -2x-9=9+x | | (6x+8)=(4x+13)+(11x+12) | | 93=2g—27 | | (6x+8)=(4x+13)+(11x+12)+x | | -3x^2-36x=300 | | 9(x-2)=7x-5 | | 4z+8=40* | | 3u—-3=15 | | -8=5v+3+6v | | -6x+9=-x-1 | | x-22+x-6+90=180 | | 3y2y=9 | | 9(11-k)=3(3k+-3) | | 9(11+-1k)=3(3k+-3) | | (2x+8)=(5x-7) | | (5x+4)+76=180 | | 5x^+8x-4=0 | | 16-3u=1.9 | | 5x+12+x+24+90=180 | | -6x-8=-7x-10 | | 90+11x+x+54=180 | | 3x+6+3x+16+7x+4=x | | 90+16x-60+11x-39=180 | | y/8-46=-38 | | 1-10x=0 | | 4(3x-2=4 | | 8.2x+3.7x=72 | | 4-3u=-5.99 | | 9p-10=-37 | | 4.6z=6.9 | | 2.3=u/4-2 |

Equations solver categories