(10/m+5)+15=3m

Simple and best practice solution for (10/m+5)+15=3m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10/m+5)+15=3m equation:



(10/m+5)+15=3m
We move all terms to the left:
(10/m+5)+15-(3m)=0
Domain of the equation: m+5)!=0
m∈R
We add all the numbers together, and all the variables
-3m+(10/m+5)+15=0
We get rid of parentheses
-3m+10/m+5+15=0
We multiply all the terms by the denominator
-3m*m+5*m+15*m+10=0
We add all the numbers together, and all the variables
20m-3m*m+10=0
Wy multiply elements
-3m^2+20m+10=0
a = -3; b = 20; c = +10;
Δ = b2-4ac
Δ = 202-4·(-3)·10
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{130}}{2*-3}=\frac{-20-2\sqrt{130}}{-6} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{130}}{2*-3}=\frac{-20+2\sqrt{130}}{-6} $

See similar equations:

| 3*(6+2)=d | | 94=8d+6 | | 20x+16+12x+24=12x+24 | | 4+11g=20+15g | | 5y-27=-7=y | | 18-4d=84 | | 5/8(8x+16)+1=1/2(12x-2)+7 | | A=4πr2 | | -1.4q=2.8 | | 9g=(3-4+5g) | | -6d+13=-7d | | 2x+95=x+15 | | y^2-y=1.25 | | 9+4/n=15-2n | | 2p-17=13-8p | | 1/2x+8=11 | | 1/2(4x-2)-2/3(6x+9)=5 | | 465(88-s)+160s=19265 | | 3y+3=9y | | 4x-12+24=24 | | 7÷5=-d÷5 | | 1x+4=6x-6 | | 2x+3/2-3x/x-3=x | | 5x+-5=3x+-3 | | (3x+21)^2​​=576. | | 4z/−12=-2 | | 2(x-3)-4(x+2)=3(x-5)-(x-2) | | 11÷30=-a÷9 | | x+1/3=32 | | -6a+51=-10a-37 | | 6(x-5)=5(x+25) | | 24=n*8 |

Equations solver categories