(1/x)-(1/(x+2))=2

Simple and best practice solution for (1/x)-(1/(x+2))=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x)-(1/(x+2))=2 equation:



(1/x)-(1/(x+2))=2
We move all terms to the left:
(1/x)-(1/(x+2))-(2)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: (x+2))!=0
x∈R
We add all the numbers together, and all the variables
(+1/x)-(1/(x+2))-2=0
We get rid of parentheses
1/x-(1/(x+2))-2=0
We calculate fractions
(1*(x+2)))/3x^2+(-(1*x)/3x^2-2=0
We add all the numbers together, and all the variables
(1*(x+2)))/3x^2+(-(+x)/3x^2-2=0
We calculate fractions
((1*(x+2)))*3x^2)/(3x^2+(*3x^2)+(-(+x)*3x^2)/(3x^2+(*3x^2)-2=0
We get rid of parentheses
((1*(x+2)))*3x^2)/(3x^2+*3x^2+(-(+x)*3x^2)/(3x^2+(*3x^2)-2=0
We calculate fractions
*3x^2+(((1*(x+2)))*3x^2)*(3x^2+*3x^2-2)/((3x^2*(3x^2+(*3x^2)-2)+((-(+x)*3x^2)*3x^2/((3x^2*(3x^2+(*3x^2)-2)=0
We calculate terms in parentheses: +(((1*(x+2)))*3x^2)*(3x^2+*3x^2-2)/((3x^2*(3x^2+(*3x^2)-2)+((-(+x)*3x^2)*3x^2/((3x^2*(3x^2+(*3x^2)-2), so:
((1*(x+2)))*3x^2)*(3x^2+*3x^2-2)/((3x^2*(3x^2+(*3x^2)-2)+((-(+x)*3x^2)*3x^2/((3x^2*(3x^2+(*3x^2)-2
We can not solve this equation

See similar equations:

| 8+5x=7x+16 | | 9=-z+-11,z= | | 6(5x-6)=42 | | -2x+1=-35+4x | | 13.02/4.2=x | | y=(-4)0 | | 11-6x=-61 | | x+14-x6=20+3+5 | | -2x+4=10+4x | | 5(1-x)+8(1+4x)=13+17x | | 6a+4=2-4(a-8) | | -2=x/11 | | -9-p=-21 | | 2(x-3)-4x=10 | | 5x+7=-6x+139 | | -5x-8+3(x-2)=2 | | -4/3x-2=3/4x-7/4 | | 482.25=210+0.99x | | 2w+2w+w+w=96 | | 34=-5y-2(-7y+1) | | 3y=4y*3 | | 1)-7(6-4x)-2(x+8)=18x-58 | | 34=5-5y-2(-7y+1) | | 4=-5(x) | | 4/3(x-5/6)=14/9 | | 2x+41+6x+9=180 | | 2.4+10m=8.31 | | 1200=870x-30 | | 6r-3=-21 | | 6x+59+3x-14=188 | | -7(-3x+4)-8x=3(x-6)-6 | | 10(h1+1)-4=76 |

Equations solver categories