(1/a)*X-4=9

Simple and best practice solution for (1/a)*X-4=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/a)*X-4=9 equation:



(1/a)*a-4=9
We move all terms to the left:
(1/a)*a-4-(9)=0
Domain of the equation: a)*a!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+1/a)*a-4-9=0
We add all the numbers together, and all the variables
(+1/a)*a-13=0
We multiply parentheses
a^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $

See similar equations:

| 3/5x+21=12 | | -5(4t-3)+7t=6t-2 | | 16+8x=18+6x | | z/5+7=-56 | | -7x-3(2-x)=42 | | Y-2=-3(x+5) | | 19=4(2y-5)+3 | | x/3=3(x-8) | | -2(3x-1)-3x=-16 | | X(2x+19)=186 | | 21+2y-4=4+15y-24 | | 25=-2(x-4)+3 | | 8d+5=29 | | 35-b=306 | | X+4/9=x+2/7 | | 6(x+6)-4=32 | | X+7(x+4)=6 | | 2(1/2q+q)=-3(2q-1)+4(2q+1) | | 55+5x=10x | | 3x+2-8x=2x+14 | | 2(4y-7)=8y-14 | | 4+t/8=-3 | | 2(7x+7)+2x=30 | | 7p-14=21 | | 7x+(-23x)+(-6x)=180 | | (x)(x+3)=2.79 | | x+x+x+4=x-6 | | 6x+3x-9=90 | | 4(.2x-5)=12 | | 3x+8=2x-13 | | Y=(9x+27) | | 8.95+.08x=0+.10x |

Equations solver categories