(1/9)x+1=27

Simple and best practice solution for (1/9)x+1=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/9)x+1=27 equation:



(1/9)x+1=27
We move all terms to the left:
(1/9)x+1-(27)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/9)x+1-27=0
We add all the numbers together, and all the variables
(+1/9)x-26=0
We multiply parentheses
x^2-26=0
a = 1; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·1·(-26)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{26}}{2*1}=\frac{0-2\sqrt{26}}{2} =-\frac{2\sqrt{26}}{2} =-\sqrt{26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{26}}{2*1}=\frac{0+2\sqrt{26}}{2} =\frac{2\sqrt{26}}{2} =\sqrt{26} $

See similar equations:

| 9/10-4/5t=5/6 | | 4.2+10m=8.36 | | 20+6u+17=2u-19 | | 3-6n=117 | | $40x+$15+.25=$45x+.35 | | 44=6(1+4c)-5c | | 0.125x+0.08(30,000−x)=3,075 | | 13/14x+8/7=6/7x | | 1/4y+1/6y=−3 | | 2(7x+3)=8−(x+9) | | 2(7x+3)=8−(x+9 | | -2c-(3c-5)+c=-11 | | -19.79-9.3y=6y+7.37-13.9y | | -2-3x+4/2-4=6 | | 12-4/5x+60/5=4 | | x+13/3=2 | | 4y+15=9y+18 | | -4-3m+8=12 | | (2/7x^2)+(3/7x)=0 | | 5x+6+15=20 | | 63(b−1)+7=7(9b−8) | | (2k+6)(2k+6)(2k+6)=0 | | 16(5c-1)-8=78c+16 | | (2k+6)^3=0 | | -3d-5=-12 | | 12+19r-11=-17+10r | | 1/24x−7/8=2/3 | | 2-3n+4=8 | | 3/x-1=6/5x-7 | | x-(16/x)+6=0 | | n+8+9n=-12+9n | | 13-3x=7;2 |

Equations solver categories