If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/8)x-(1/5)=19
We move all terms to the left:
(1/8)x-(1/5)-(19)=0
Domain of the equation: 8)x!=0determiningTheFunctionDomain (1/8)x-19-(1/5)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/8)x-19-(+1/5)=0
We multiply parentheses
x^2-19-(+1/5)=0
We get rid of parentheses
x^2-19-1/5=0
We multiply all the terms by the denominator
x^2*5-1-19*5=0
We add all the numbers together, and all the variables
x^2*5-96=0
Wy multiply elements
5x^2-96=0
a = 5; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·5·(-96)
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{30}}{2*5}=\frac{0-8\sqrt{30}}{10} =-\frac{8\sqrt{30}}{10} =-\frac{4\sqrt{30}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{30}}{2*5}=\frac{0+8\sqrt{30}}{10} =\frac{8\sqrt{30}}{10} =\frac{4\sqrt{30}}{5} $
| 24x+1600=35x+1204 | | -0.7d+-9.7=0.7 | | 2(3n-2)+9=-5 | | 5-3x=2x+4 | | 3x+15=175. | | 5/4+7=7/8b+19 | | 2(y-5)=3y+7 | | 10a+5=-25 | | 338=3x^2+17x-160 | | 6+2x=0.5(12+4) | | 13x-36=180 | | (3x-11)=(x+23) | | 3x-20=400 | | I6=7x+2 | | (-22.5x)=-315 | | 200.000=192(4^x-3) | | x+51+112=180 | | 8x-18=2(2x+3) | | 2(0.5)(0.5)=x | | 4+c-12+.75c=8 | | 4+c-12+3/4c=8 | | 6a+3/7=2a-4/3 | | 2y-1+7y-8=180 | | 42x=10110 | | -6(-6x-6)=252 | | 4(29-1)-6(a+1)=0 | | 20(x)+10(319-x)=319(5.860) | | 111+5x-28=x+333 | | 1.75+s=7 | | (0.25x-3)-(0.5(0.25x-3)+2)=2 | | 32q-12=168 | | X5+16x=0 |