(1/8)(x+35)=7

Simple and best practice solution for (1/8)(x+35)=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)(x+35)=7 equation:



(1/8)(x+35)=7
We move all terms to the left:
(1/8)(x+35)-(7)=0
Domain of the equation: 8)(x+35)!=0
x∈R
We add all the numbers together, and all the variables
(+1/8)(x+35)-7=0
We multiply parentheses ..
(+x^2+1/8*35)-7=0
We multiply all the terms by the denominator
(+x^2+1-7*8*35)=0
We get rid of parentheses
x^2+1-7*8*35=0
We add all the numbers together, and all the variables
x^2-1959=0
a = 1; b = 0; c = -1959;
Δ = b2-4ac
Δ = 02-4·1·(-1959)
Δ = 7836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7836}=\sqrt{4*1959}=\sqrt{4}*\sqrt{1959}=2\sqrt{1959}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1959}}{2*1}=\frac{0-2\sqrt{1959}}{2} =-\frac{2\sqrt{1959}}{2} =-\sqrt{1959} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1959}}{2*1}=\frac{0+2\sqrt{1959}}{2} =\frac{2\sqrt{1959}}{2} =\sqrt{1959} $

See similar equations:

| 72-1/12(7x-24)=99-5/12 | | 10+0.45h=5+0.65h | | B17-9b17=4817 | | -4q+6=18 | | 4x+5-2x+8=37 | | -3/4(3x+6)=-1/4(5x-24) | | 18n=−7. | | 1.2x+2.4x=-14.4 | | (30y)+90=180 | | -2x-4/3=8 | | 5x+52+10x+95=180 | | 3x+4x+x=2x+15 | | 4z-4=-20 | | 5(d+-2)=14 | | 5d=6d+16 | | -4/3+1/2u=-6/5 | | −3.2=l+(−0.2) | | X+(x-1)=109 | | 9=2(y+1.7) | | 4x^2+20=124 | | k/7+21=-10 | | 7x+3(x+7)=(x+4)+3x | | 3.4x-4+x=2.4x+12.6 | | 4x-35=2x-31 | | a+-20=-6 | | 4b−3b=14 | | 2v-6v=-4v | | 10−9q=–10q | | 3x-10=-2+10 | | 4(3×-2)=16x | | 80=-8(n-3)-6(n+7) | | 2b+1+2b=5 |

Equations solver categories