(1/6x)+(5/4x)=2

Simple and best practice solution for (1/6x)+(5/4x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6x)+(5/4x)=2 equation:



(1/6x)+(5/4x)=2
We move all terms to the left:
(1/6x)+(5/4x)-(2)=0
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/6x)+(+5/4x)-2=0
We get rid of parentheses
1/6x+5/4x-2=0
We calculate fractions
4x/24x^2+30x/24x^2-2=0
We multiply all the terms by the denominator
4x+30x-2*24x^2=0
We add all the numbers together, and all the variables
34x-2*24x^2=0
Wy multiply elements
-48x^2+34x=0
a = -48; b = 34; c = 0;
Δ = b2-4ac
Δ = 342-4·(-48)·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-34}{2*-48}=\frac{-68}{-96} =17/24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+34}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| -7x-1+6x=-5 | | -5m+m=-4m | | 12y-32=4(3y-8) | | 3.6x-4=9.2x+1 | | 5m-8=14m=13 | | w=5w^2-19w+w | | -18=-10c+2 | | 6x+3+14x-33=180 | | -4=10-x/5 | | 9x-7=30x | | 2(x-5)=-0.5(20-4x) | | 50*14.50=19n=3 | | 6x-3+2x=8+7-10 | | 434.70=29+1.1x | | 4x+8=3-92x | | 1/2(x−8)+12=2/3(x−12) | | 7x+4=8x-1 | | (2x-5)+(3x-5)=35 | | 10x+12=10x+-12 | | -28-3p=28-8p | | -11/3=-2(n+5/6) | | 10p+5(p-3)=5 | | 2x+20+12X=90 | | 2x+20+12X=180 | | -15+4z=4z+11 | | -8(n-7)+3(3n-3)=41+n | | 9z-54=42+66 | | 1/3|4p-11|=p-4+4 | | 4m-12=53 | | 2n+4=13 | | 2x+56x-1=120 | | 21v+24=0 |

Equations solver categories