(1/6)x-1=1/8

Simple and best practice solution for (1/6)x-1=1/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)x-1=1/8 equation:



(1/6)x-1=1/8
We move all terms to the left:
(1/6)x-1-(1/8)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)x-1-(+1/8)=0
We multiply parentheses
x^2-1-(+1/8)=0
We get rid of parentheses
x^2-1-1/8=0
We multiply all the terms by the denominator
x^2*8-1-1*8=0
We add all the numbers together, and all the variables
x^2*8-9=0
Wy multiply elements
8x^2-9=0
a = 8; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·8·(-9)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*8}=\frac{0-12\sqrt{2}}{16} =-\frac{12\sqrt{2}}{16} =-\frac{3\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*8}=\frac{0+12\sqrt{2}}{16} =\frac{12\sqrt{2}}{16} =\frac{3\sqrt{2}}{4} $

See similar equations:

| 20=3x+2x-1020=3x+2x−10 | | 3(y-4)+15=-6 | | 3(x=1)-4x=3(2x+1)-7x | | 2(11-s)=24 | | 132=11x=44 | | 6-12z+7z-15=3z+7 | | 75=3(-7x-5) | | 6(m+3)=6(m-2) | | 2=x+61 | | 12m+2=(6m+1) | | -5y+25=20 | | 20r=720 | | 2x=2x-9=19 | | 4x-8=9x+4-2x | | 9x+6=108 | | -41=1-3a | | 4=-8x/4 | | 50x-10-8x-16=180 | | 5x-12+3x+2=2x+44 | | -1+(1/2x)=-4x+179 | | p/4p=-22. | | 7-(4y-6)=5y-14 | | -10-6b=-7b | | y-4=4/7 | | |-4n-10|=30 | | 2h+1.6=9.48 | | 1=x-39 | | 0.6=80-x÷80+x | | -4g+3=-3g+17 | | 10+10x=-140 | | 12c+4c+1-7=2(8c-3) | | f-5=1/5+2 |

Equations solver categories