(1/6)(x+4)=10

Simple and best practice solution for (1/6)(x+4)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)(x+4)=10 equation:



(1/6)(x+4)=10
We move all terms to the left:
(1/6)(x+4)-(10)=0
Domain of the equation: 6)(x+4)!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)(x+4)-10=0
We multiply parentheses ..
(+x^2+1/6*4)-10=0
We multiply all the terms by the denominator
(+x^2+1-10*6*4)=0
We get rid of parentheses
x^2+1-10*6*4=0
We add all the numbers together, and all the variables
x^2-239=0
a = 1; b = 0; c = -239;
Δ = b2-4ac
Δ = 02-4·1·(-239)
Δ = 956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{956}=\sqrt{4*239}=\sqrt{4}*\sqrt{239}=2\sqrt{239}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{239}}{2*1}=\frac{0-2\sqrt{239}}{2} =-\frac{2\sqrt{239}}{2} =-\sqrt{239} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{239}}{2*1}=\frac{0+2\sqrt{239}}{2} =\frac{2\sqrt{239}}{2} =\sqrt{239} $

See similar equations:

| 5/2y-3/2=-1/2 | | -6-2(2k+4)=18 | | -x-7=-5+x | | 5(x-1)=2(x-4))-6 | | 5-2x=-1-5x+3x | | 1/3×+1/3y=-2/3 | | 2/3+3x/4=71/2 | | 13+s/6=3 | | 4x+15=1x+5 | | X2+9x=28 | | x/5+3x=1/2 | | 1/2^2-x+8=0 | | -2(6s-5)+13(s-9)=-106-9 | | 2x+9-4(x+1)=6x+8 | | 2.7x-1.3=4.1 | | 3x-4=7-(x+5) | | 7c-(3c-9)=c-6 | | 7(r-5)-2(-7r-10)=9r-5+2 | | k/6+10=-8 | | 1/5(x-2)=1/10(x+6) | | 4x/3=3x/2+4 | | 52x+12x=5x+112+72x | | 12x+10=54-10 | | 2(4z-2)=44 | | x^2+-100x+2275=0 | | 0.7x+3/4=2.1+x/5 | | x/6=x/5-2 | | -12x-16=9-7x | | 3x+1=24x | | -x-(2+4)=-2x | | 1.9w=1•8 | | 2(4z-2=44 |

Equations solver categories