(1/6)(2x+1)=x+3

Simple and best practice solution for (1/6)(2x+1)=x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)(2x+1)=x+3 equation:



(1/6)(2x+1)=x+3
We move all terms to the left:
(1/6)(2x+1)-(x+3)=0
Domain of the equation: 6)(2x+1)!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)(2x+1)-(x+3)=0
We get rid of parentheses
(+1/6)(2x+1)-x-3=0
We multiply parentheses ..
(+2x^2+1/6*1)-x-3=0
We multiply all the terms by the denominator
(+2x^2+1-x*6*1)-3*6*1)=0
We add all the numbers together, and all the variables
(+2x^2+1-x*6*1)=0
We get rid of parentheses
2x^2-x*6*1+1=0
Wy multiply elements
2x^2-6x*1+1=0
Wy multiply elements
2x^2-6x+1=0
a = 2; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·2·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{7}}{2*2}=\frac{6-2\sqrt{7}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{7}}{2*2}=\frac{6+2\sqrt{7}}{4} $

See similar equations:

| 5+7x=3x | | x3-17x2+72x=0 | | X^2+5=y | | 10x-50+14=38 | | 14–2(q–10)=38 | | 5x-10+14=19 | | -2p+8=5-9p-6 | | 4^x+2.14^x-3.49^=0 | | 4^x+2.14^x=3.49^x | | a^2-3a+18=0 | | 1.065x+1.045x+1,025x=7837.50 | | 0.5=1.6/x | | 0.5=x/3.5 | | 2x*3=14.5 | | 6x+10+2x=7+23 | | 2+6x=8-9x | | -2a^2+10a+48=0 | | 16=6-3×a | | -45+3m=-600 | | 3d+28=5d+8 | | 5y=4y+5 | | -8+6x=-20 | | x+x(.10)=250 | | x+x(.25)=250 | | 2(x+2)-12=5+2x | | 5x-10+5x-10=90 | | 7x-3=-4x-17 | | v*4=2*(v*40) | | -8(7-4n)-2n=16+12n | | 504=x-14=0 | | 4x+8-x/2=42 | | 16x+12=360 |

Equations solver categories