If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/5x)+(3x)=(2x)+42
We move all terms to the left:
(1/5x)+(3x)-((2x)+42)=0
Domain of the equation: 5x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/5x)+3x-(2x+42)=0
We add all the numbers together, and all the variables
3x+(+1/5x)-(2x+42)=0
We get rid of parentheses
3x+1/5x-2x-42=0
We multiply all the terms by the denominator
3x*5x-2x*5x-42*5x+1=0
Wy multiply elements
15x^2-10x^2-210x+1=0
We add all the numbers together, and all the variables
5x^2-210x+1=0
a = 5; b = -210; c = +1;
Δ = b2-4ac
Δ = -2102-4·5·1
Δ = 44080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44080}=\sqrt{16*2755}=\sqrt{16}*\sqrt{2755}=4\sqrt{2755}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-4\sqrt{2755}}{2*5}=\frac{210-4\sqrt{2755}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+4\sqrt{2755}}{2*5}=\frac{210+4\sqrt{2755}}{10} $
| -5c=2-4c | | m+23=109 | | 42+2x+4=90 | | 0.3x-24=45 | | 2^x-1=512 | | 2x+156=360 | | 0.5x+3=3x-6 | | 8•x=24 | | 8x-24=4x+44 | | Y=-1/9x+2 | | x4+-13x2+42=0 | | 3m-6=3m+21 | | 54+8x+30=180 | | 8(x+2)=2(x-13) | | G(x)=7x^2-576 | | 10^13x+4=85 | | x-4x=-2 | | z=27.116-z= | | 18/48=x/600 | | y=821(0.14)^6 | | 0.3x-51=180 | | 6r-6r+2r=14 | | 0.3x-51=90 | | -3x-9x+16x=16 | | 15r—-16r+14r+-11r-3r=12 | | x2-40=0 | | 33-w=19 | | 0.1x-21=180 | | y=821(1-0.15)^6 | | -6+6u=8u | | 3(3x+4)=15=45 | | 19=w-33 |