If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/55x)+x=45
We move all terms to the left:
(1/55x)+x-(45)=0
Domain of the equation: 55x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/55x)+x-45=0
We add all the numbers together, and all the variables
x+(+1/55x)-45=0
We get rid of parentheses
x+1/55x-45=0
We multiply all the terms by the denominator
x*55x-45*55x+1=0
Wy multiply elements
55x^2-2475x+1=0
a = 55; b = -2475; c = +1;
Δ = b2-4ac
Δ = -24752-4·55·1
Δ = 6125405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6125405}=\sqrt{169*36245}=\sqrt{169}*\sqrt{36245}=13\sqrt{36245}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2475)-13\sqrt{36245}}{2*55}=\frac{2475-13\sqrt{36245}}{110} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2475)+13\sqrt{36245}}{2*55}=\frac{2475+13\sqrt{36245}}{110} $
| Y=6x(6x)(6x)-2x+5 | | -8t-7=7-10t | | 9x=927 | | 4x+1=11x-50 | | 10q=9q+8 | | u2+9u+20=0 | | 1/2x+4=5/8+x | | 18+3=19x+3 | | 9-b=6 | | −6(5−7f)=28 | | 10-(-8j)=74 | | 6(4x+3)=2(11+9) | | -2z=10-4z | | -4m-(-260)=-76 | | -5u+8=-3u | | 5^x-2=600 | | -3+14=15x-4-14x | | 4j-340=32 | | 23x=91 | | 3x-1=x+65 | | 4×x×x-2×(1+√2)×x+√2=0 | | 11+2m=17 | | x-9/4=13 | | 2(5x-12)+2(3x)=360 | | y/2+6=-16 | | 9x-(x+4)=20 | | x+11/7=15 | | 18=4r+2 | | 7(x-6)-4=60 | | 2(5x-10)+2(3x)=360 | | Y/6-3=y/12 | | 3/8n+1=-27 |