(1/5)x+(1/2)x=14

Simple and best practice solution for (1/5)x+(1/2)x=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)x+(1/2)x=14 equation:



(1/5)x+(1/2)x=14
We move all terms to the left:
(1/5)x+(1/2)x-(14)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)x+(+1/2)x-14=0
We multiply parentheses
x^2+x^2-14=0
We add all the numbers together, and all the variables
2x^2-14=0
a = 2; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·2·(-14)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*2}=\frac{0-4\sqrt{7}}{4} =-\frac{4\sqrt{7}}{4} =-\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*2}=\frac{0+4\sqrt{7}}{4} =\frac{4\sqrt{7}}{4} =\sqrt{7} $

See similar equations:

| y=35-6y | | 4n+18=6n+5 | | -x+10=7(3) | | 6u=3u+27 | | 1/5*x+1/2*x=14 | | 5×n=45 | | 193+75-2×3=n | | -2v+3=-3-4v | | 5n+4=80 | | 4(-x1)+2(x-7)=12 | | Y=12x+8.5 | | 2.6+x=10.4 | | -28=-v/8 | | 11=2n-7 | | (X^2+8x+12)(2x-18)=0 | | 5u+7=35 | | 7x-3+4×12=180 | | 84+(3x-5)=180 | | y=80-120 | | 45=3v-12 | | (5x+4)=3x+29 | | x+(4*3)-4=65 | | 9+11x-6x+3x=33 | | 2(4x)=(9x+26)-35 | | 3p–2(p+6)=5p–8 | | (136x·x19)−12= | | F(x)=100(088)^x | | 15x=70 | | 8x-10=2(4x5) | | 8+2(x-6=-2+2x-2 | | 5d-2/3=2d-1 | | 2(3x-7)+6=-16+2x |

Equations solver categories