(1/5)w+9=20

Simple and best practice solution for (1/5)w+9=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)w+9=20 equation:



(1/5)w+9=20
We move all terms to the left:
(1/5)w+9-(20)=0
Domain of the equation: 5)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+1/5)w+9-20=0
We add all the numbers together, and all the variables
(+1/5)w-11=0
We multiply parentheses
w^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $

See similar equations:

| 15h—9=-54 | | 2(6k-)=-38 | | 5x+9-7x=-2(x+4) | | (5x−2)=(4x2−3x−2) | | 3n(2n+6)=0 | | 6(5x-5)=-180 | | 16=-(3/5)x+4 | | −2(4x−5)+2x+4=26 | | 8=48/n | | 2x+12=-12x | | 6x^2+20=140 | | -6(4x-8)=-24 | | 3x-2/4-2x+5/2=4x-1/3 | | 3=–6n+5 | | -6(-7x+3)=-270 | | -6(-6x-2)=156 | | -7(-7x-3)=-126 | | 28=-6r-8 | | 2.5/5=1.5/x | | -5(4x+8)=-180 | | n=16/2 | | 2(2-3t)=2t-30 | | 1/w+4=w−3/w | | 2m=-10=-22 | | 7^3y=6 | | 6(-6x+7)=-174 | | -8x-12=-52 | | 4g-8+3=35 | | -8x=+40-16 | | -7(-7x-2)=280 | | 4x-9=3x=7 | | -6(-3x-3)=-126 |

Equations solver categories