(1/5)(x+8)=4

Simple and best practice solution for (1/5)(x+8)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)(x+8)=4 equation:



(1/5)(x+8)=4
We move all terms to the left:
(1/5)(x+8)-(4)=0
Domain of the equation: 5)(x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)(x+8)-4=0
We multiply parentheses ..
(+x^2+1/5*8)-4=0
We multiply all the terms by the denominator
(+x^2+1-4*5*8)=0
We get rid of parentheses
x^2+1-4*5*8=0
We add all the numbers together, and all the variables
x^2-159=0
a = 1; b = 0; c = -159;
Δ = b2-4ac
Δ = 02-4·1·(-159)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{159}}{2*1}=\frac{0-2\sqrt{159}}{2} =-\frac{2\sqrt{159}}{2} =-\sqrt{159} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{159}}{2*1}=\frac{0+2\sqrt{159}}{2} =\frac{2\sqrt{159}}{2} =\sqrt{159} $

See similar equations:

| 7x-2-8x=-9 | | |x+8|=12 | | m-2/3+1=2m/7 | | k^2-16k-20=0 | | 6(-4-3r)=36-8r | | 8.6x=12.04 | | 44=4(1-3n)+2n | | 3x+2x^2-8x=0 | | 150=70+(15+7)w | | 3k-7k-14=44 | | -4(m+3=24 | | 3x-9=-129 | | 4x-21=-81 | | (x+1)^2/5-3(x+1)^1/5+2=0 | | 13m-2/7=-4 | | k^2+12k+37=0 | | x2+5x−7x2+5x−7x=2x=2. | | |-4v-7|+8=43 | | -30=-5a-(21+8a) | | -6x^2=-x+4 | | 3k-7k=44 | | 7-(4x-3)=1-5x | | x(1/3x-1)-6(1/3x+1)=1/3x^+x-6 | | 8b+11-3b=2b=2 | | 9=5s/2-s/4 | | 13x+(-5)=10 | | 5+n/10=20 | | 2x+(2x-5)+x=65 | | w/8+3=12 | | -7y-2+y+4=44 | | -2(b-2)=2-7b | | |2x+2|=10 |

Equations solver categories