(1/5)(5x+12)=18

Simple and best practice solution for (1/5)(5x+12)=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)(5x+12)=18 equation:



(1/5)(5x+12)=18
We move all terms to the left:
(1/5)(5x+12)-(18)=0
Domain of the equation: 5)(5x+12)!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)(5x+12)-18=0
We multiply parentheses ..
(+5x^2+1/5*12)-18=0
We multiply all the terms by the denominator
(+5x^2+1-18*5*12)=0
We get rid of parentheses
5x^2+1-18*5*12=0
We add all the numbers together, and all the variables
5x^2-1079=0
a = 5; b = 0; c = -1079;
Δ = b2-4ac
Δ = 02-4·5·(-1079)
Δ = 21580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21580}=\sqrt{4*5395}=\sqrt{4}*\sqrt{5395}=2\sqrt{5395}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5395}}{2*5}=\frac{0-2\sqrt{5395}}{10} =-\frac{2\sqrt{5395}}{10} =-\frac{\sqrt{5395}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5395}}{2*5}=\frac{0+2\sqrt{5395}}{10} =\frac{2\sqrt{5395}}{10} =\frac{\sqrt{5395}}{5} $

See similar equations:

| 35.39x=-38.88 | | 2(x4)=x+10 | | 6(6v+6-5-6v=1 | | Y=-2x^2-6x+56 | | (2*3)x-14=-66 | | 0.24=0.3m+0.6 | | (2/3)x-14=-6 | | 1/9x=1/6x | | -4(d-18)=8 | | 4-8=x+0 | | -2(x=6)=2 | | -16.8t=-15.5t+15.34 | | (m-3)/(m+5)=0 | | 5x+10=30-2x=58 | | 2(x-6)-8=-3(x+5) | | (16x-4)(2x+13)=90 | | N=2x+1 | | p-8/9=9 | | 4x-(5-x)=2-3(7x+7) | | -13r=9-14r | | −2+y/10=−6 | | -6(x+4)=-66 | | x=(1.08)30 | | 3x+2x=7=10x-16 | | -16+6v=9v+20 | | 8x-12-4x=7x+5-5x | | 5x-(9-(-3x+7)+10=0 | | -12n+20=2n-19-17 | | 90=37.21+0.50x | | −3(−2x+20)+8(x+12)=92 | | -1=x/9+4 | | 6y-8=6y+4 |

Equations solver categories