If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/5)(3x+110)=5x
We move all terms to the left:
(1/5)(3x+110)-(5x)=0
Domain of the equation: 5)(3x+110)!=0We add all the numbers together, and all the variables
x∈R
(+1/5)(3x+110)-5x=0
We add all the numbers together, and all the variables
-5x+(+1/5)(3x+110)=0
We multiply parentheses ..
(+3x^2+1/5*110)-5x=0
We multiply all the terms by the denominator
(+3x^2+1-5x*5*110)=0
We get rid of parentheses
3x^2-5x*5*110+1=0
Wy multiply elements
3x^2-2750x*1+1=0
Wy multiply elements
3x^2-2750x+1=0
a = 3; b = -2750; c = +1;
Δ = b2-4ac
Δ = -27502-4·3·1
Δ = 7562488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7562488}=\sqrt{4*1890622}=\sqrt{4}*\sqrt{1890622}=2\sqrt{1890622}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2750)-2\sqrt{1890622}}{2*3}=\frac{2750-2\sqrt{1890622}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2750)+2\sqrt{1890622}}{2*3}=\frac{2750+2\sqrt{1890622}}{6} $
| 17.7v-15.68-8v=7.24+10.9v | | -5x+2(1-7x)=x-38 | | 8a+4a=12a | | X2+3x3=180 | | 3m/3=-15/3 | | 12x+8=-12 | | 3m÷3=-15÷3 | | 1p+7p=44.94 | | 5/4(7+3z)=-z/8 | | 9,909-9,009=x | | u-14+17u=20u+16 | | 1p+7p=44 | | 4-3(x+6=28 | | 3(x-5)-8(x-4)=25 | | 52+2^(3x+1)=180 | | 3(3x-2)-2x=22 | | 7=4+1/2(8x-6)-3x | | x/336=230/48 | | 90+4x+2=180 | | c/2/8=12 | | 3n+6.5=15.5 | | 230/48=x/336 | | -18-2c=-c+2 | | c2/8=12 | | 230/48=x/33.6 | | 8u+2(u-7)=34 | | y=450+.8y | | 6.66-11.6z=-4.2z | | -9q+8=8−9q | | −4.75=2z | | 4x^2+6x=7x | | (1-6x)(1+x)^100=1 |