(1/4x)+18=x

Simple and best practice solution for (1/4x)+18=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4x)+18=x equation:



(1/4x)+18=x
We move all terms to the left:
(1/4x)+18-(x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/4x)-x+18=0
We add all the numbers together, and all the variables
-1x+(+1/4x)+18=0
We get rid of parentheses
-1x+1/4x+18=0
We multiply all the terms by the denominator
-1x*4x+18*4x+1=0
Wy multiply elements
-4x^2+72x+1=0
a = -4; b = 72; c = +1;
Δ = b2-4ac
Δ = 722-4·(-4)·1
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-20\sqrt{13}}{2*-4}=\frac{-72-20\sqrt{13}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+20\sqrt{13}}{2*-4}=\frac{-72+20\sqrt{13}}{-8} $

See similar equations:

| -11k+14=-11-25 | | 13/10x=-30/39 | | 4x+-7=3x+4 | | 5x–8=7 | | 1=13-6x | | 0=x^2+3x-250 | | 3/2k-3=6 | | 5z+12=-3 | | 19x-8-1=10 | | -15-5n=3n41 | | 1/3(x+9)=1/2x+2 | | 18.6=2.7y | | 14+y/2=59 | | 10−3x−1 2=6x+3 11 | | 9g+29=254 | | 11+9p=-7 | | 10x-9-4x=-6 | | 12+9h=75 | | -4(p+2)+8=2(p+1)-7p+15 | | 50x^2+100x+900=0 | | 8=-7(y+1)=2y | | 6v+12=8v+2 | | 4x–12=8 | | 6xX15=39 | | 1/10×+1/4x=21 | | 3m+2=7 | | 31+2n=14+2n | | (14-k)/3=11 | | 6x-4=-18+x | | 3x–7=13 | | 7(3-u)+u=5-26 | | 8+c÷-5=11 |

Equations solver categories