If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)x-(2/5)=7
We move all terms to the left:
(1/4)x-(2/5)-(7)=0
Domain of the equation: 4)x!=0determiningTheFunctionDomain (1/4)x-7-(2/5)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)x-7-(+2/5)=0
We multiply parentheses
x^2-7-(+2/5)=0
We get rid of parentheses
x^2-7-2/5=0
We multiply all the terms by the denominator
x^2*5-2-7*5=0
We add all the numbers together, and all the variables
x^2*5-37=0
Wy multiply elements
5x^2-37=0
a = 5; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·5·(-37)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{185}}{2*5}=\frac{0-2\sqrt{185}}{10} =-\frac{2\sqrt{185}}{10} =-\frac{\sqrt{185}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{185}}{2*5}=\frac{0+2\sqrt{185}}{10} =\frac{2\sqrt{185}}{10} =\frac{\sqrt{185}}{5} $
| -2x-2=7x+7 | | 1/4x-2/5=7 | | u/3+15=32 | | -6x+4=4x+114 | | 2-1/2n=3n | | f(5)=-3+20 | | -8h-h+-11=6 | | -8h—9h+-11=6 | | 8x-4=-12+4x | | √(2z+3)=-z | | 6x-10=7x-13 | | 1.5x+x=145 | | (3/2)x+x=145 | | 6(x-3)+8=3x+3(-2+x) | | x+x+2x+3x=602 | | -9x-59=-149 | | -15/c=3 | | 2x+8=x-72 | | 2x+5+2x+4+2x=2x+2x+3x+3 | | 3x+8=-72 | | 9+2x=5x+27 | | -1/6z=6/7 | | 6y-4=22 | | W+(2w-3)+w+(2w-3)=30 | | 6y-5=22 | | 6y-3=20 | | 7x=-2/3 | | 4x-7+x+12=-25 | | -9m•-10=-95 | | 7(7y-8)=(6y+9) | | 63x+30x=400+30x | | 6.015(x)+7.016(x-1)=6.941 |