If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)w=96
We move all terms to the left:
(1/4)w-(96)=0
Domain of the equation: 4)w!=0We add all the numbers together, and all the variables
w!=0/1
w!=0
w∈R
(+1/4)w-96=0
We multiply parentheses
w^2-96=0
a = 1; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·1·(-96)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*1}=\frac{0-8\sqrt{6}}{2} =-\frac{8\sqrt{6}}{2} =-4\sqrt{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*1}=\frac{0+8\sqrt{6}}{2} =\frac{8\sqrt{6}}{2} =4\sqrt{6} $
| 39=-2f-9 | | t*3-2=10 | | 0.2x+1.2=0.35x | | -6t-1=8+3t+10t= | | -5x-7=-6x-5 | | 3x(1/2)=15 | | −2(3h−1)=5(2h−3) | | -7x+9=-9x-3 | | 11=c | | t^2+5t-300=0 | | 6t-4t=-14 | | 1,5x+2(55-2x)=72,5 | | 8=+b/2=7 | | 3=-c-2c | | 15+u/3=15 | | -2x+8(x+5)=22 | | 3+s5=-1 | | -4=-5u+3(u-6) | | x+(x*0.1)=150 | | 15^2+7r=2 | | 4y+2(y+5)=-32 | | 6×+2y=-7 | | 3z+6+75=180 | | 5/6=2/3y | | 3+s/5=-1 | | 12=14+q/6 | | t=$6.00,$6.10,$6.64,$7.00 | | -12=-5p+7p | | 12x+58+70=180 | | 10m=5-35 | | 35=-10y-5 | | q-9=-18 |