(1/4)w+(1/2)w+5=11

Simple and best practice solution for (1/4)w+(1/2)w+5=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)w+(1/2)w+5=11 equation:



(1/4)w+(1/2)w+5=11
We move all terms to the left:
(1/4)w+(1/2)w+5-(11)=0
Domain of the equation: 4)w!=0
w!=0/1
w!=0
w∈R
Domain of the equation: 2)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+1/4)w+(+1/2)w+5-11=0
We add all the numbers together, and all the variables
(+1/4)w+(+1/2)w-6=0
We multiply parentheses
w^2+w^2-6=0
We add all the numbers together, and all the variables
2w^2-6=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $

See similar equations:

| 830=102x-203,594 | | X-2x=6x-9-6x | | 3(x+45)+2x=540 | | 1x+6x=42 | | 21=x-4 | | F(x)=21x-14 | | 3g-4.75=21 | | −4a−9=−9a+26 | | 3(4x+2)=2(2x+15) | | -77-2m=8m-5 | | 10x+11x=12 | | I=102x-203,594 | | 8a-a=a+24 | | 9k+23=5k+43 | | -(5a+-6)=6a+16 | | 5w+17=38+2w | | x=6x=42 | | -7=-2+5u | | .074×n=74 | | 4/5a+60=0 | | m/9+59=54 | | 4/5x+60=0 | | 8x+14=x+28 | | 5x+24=13x-0 | | 2v+8=18 | | Y=-7/15x+3 | | 8-3(2-b)=2b-13 | | 3/4x-7=14+3/7x | | 3/4x-7=14+3/7 | | 10x-10=4-4x | | 18w-2=20w+14 | | 3x=x+98 |

Equations solver categories