(1/4)r+1=32

Simple and best practice solution for (1/4)r+1=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)r+1=32 equation:



(1/4)r+1=32
We move all terms to the left:
(1/4)r+1-(32)=0
Domain of the equation: 4)r!=0
r!=0/1
r!=0
r∈R
We add all the numbers together, and all the variables
(+1/4)r+1-32=0
We add all the numbers together, and all the variables
(+1/4)r-31=0
We multiply parentheses
r^2-31=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $

See similar equations:

| 3(1+2y)-6y=3 | | 7/20x4= | | 6x^2-108=-18 | | 3x^2+5x+2x^2+3x=+ | | 5x-2(13-3x)=18 | | 8(3x+6)=9(2x+4) | | 5.2x=-26 | | 10x−10−x2=20 | | 4x30=10x-9 | | 5x-7=7x5-12 | | 3h(h)=486 | | 4,000-d=1,499 | | 128.9-r=60.7 | | (2x-3)(X3+5x-4)=0 | | 7-q=2 | | 12x-15=18x | | x*x+5=3450 | | 17=68n | | x+15x=2 | | 3x=26-5x | | 2n+1.2=6n-8 | | 1/3x+5=37 | | 14=7x-9x | | 2n+1.2=6n | | 144=(-360/n-180) | | 5/4x5=51/2 | | 3x/7=4/(3 | | 2x+x+15+35=180 | | X^2+3x=-70 | | 7x-110=2x-20 | | 17x+91=2(8x+47) | | x+89=2(x+16) |

Equations solver categories