If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)a+(1/3)a+8=22
We move all terms to the left:
(1/4)a+(1/3)a+8-(22)=0
Domain of the equation: 4)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 3)a!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
(+1/4)a+(+1/3)a+8-22=0
We add all the numbers together, and all the variables
(+1/4)a+(+1/3)a-14=0
We multiply parentheses
a^2+a^2-14=0
We add all the numbers together, and all the variables
2a^2-14=0
a = 2; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·2·(-14)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*2}=\frac{0-4\sqrt{7}}{4} =-\frac{4\sqrt{7}}{4} =-\sqrt{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*2}=\frac{0+4\sqrt{7}}{4} =\frac{4\sqrt{7}}{4} =\sqrt{7} $
| (x-3)^2=64 | | -2/3x(3x4-4)+3x=5/6 | | 5(x-5)+2=-23 | | 9-2x-5-19x=7 | | 5(1+5b)=130 | | X•x•x=64 | | 6(6x-1)=-6-6x | | 8x-13=5+3x | | (2x-4)+(4x+10)=9x-9 | | −2/3(3x−4)+3x=5/6 | | 7(x-2)+4(x-12)=2x+9x | | p^2-6p-91=0 | | 4+4n=6-2n | | -3x-9=-4x-3 | | t÷-11=11 | | X+2x=-21 | | -5(1+x)=-3x-11 | | w-14=2 | | 41s^2-22s=0 | | 190=5x-250+40 | | 1+5b=-5+6b | | 7.25*10+5.50x=105.50 | | 0.04(6x-1)=0.2+5 | | v+5v=-3(v-8)+7(v-6) | | x+1/5=9/10 | | -5(2y-3)-y=-4(y-4) | | X-3+2x=12+6x | | 54-7x=20+10x | | 1.025x+2.458=2.458 | | -6+3x+4x=-6 | | m^2-4m-50=0 | | (x-4)^2=81 |