(1/4)*s+8=40

Simple and best practice solution for (1/4)*s+8=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)*s+8=40 equation:



(1/4)*s+8=40
We move all terms to the left:
(1/4)*s+8-(40)=0
Domain of the equation: 4)*s!=0
s!=0/1
s!=0
s∈R
We add all the numbers together, and all the variables
(+1/4)*s+8-40=0
We add all the numbers together, and all the variables
(+1/4)*s-32=0
We multiply parentheses
s^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $

See similar equations:

| 1.5t+10=-35 | | x^{4}-x^{3}-27x^{2}+25x+50=0 | | 3.5w-20=22 | | 3.5w-20=222 | | X+4x+8x=266 | | -16-7b=-2b-3b | | 11=r6 | | (D^2-2D-3y)y=0 | | 7n^2-14n-17=4 | | (x•-16)(x•4)=0 | | (0.20+x)^2/(0.50-x)^2=1.44 | | 3n-4=2n+11 | | 100^(3/2)=x | | 4x+7=9-6x | | 7x16=5(x-3) | | 3x+5+4x+8x-14=180 | | 4+3D=-11+2d | | 3x÷2+4x÷5=23 | | -13(5)+((7/8)x)=-79 | | -13(5)+((-7/8)x)=-79 | | 1/4x+15=-6 | | 9/473=11/x | | 9/11=473/x | | (10-(2000*0.04))+5=(10-4500x)+5 | | (110-(2000*0.04))+5=(110-4500x)+5 | | 1.1(b−10)=55 | | (110-(2000*0.04))+5=110-4500x+5 | | 6a-12=4a | | 5.8z−0.8=5.6z+1.1 | | 5n+52=2n+16 | | 12n+6=7n+51 | | 8x-2(20-3(x-4))=x |

Equations solver categories