(1/4)(x+2)+5=-x

Simple and best practice solution for (1/4)(x+2)+5=-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(x+2)+5=-x equation:



(1/4)(x+2)+5=-x
We move all terms to the left:
(1/4)(x+2)+5-(-x)=0
Domain of the equation: 4)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(x+2)-(-1x)+5=0
We get rid of parentheses
(+1/4)(x+2)+1x+5=0
We multiply parentheses ..
(+x^2+1/4*2)+1x+5=0
We multiply all the terms by the denominator
(+x^2+1+1x*4*2)+5*4*2)=0
We add all the numbers together, and all the variables
(+x^2+1+1x*4*2)=0
We get rid of parentheses
x^2+1x*4*2+1=0
Wy multiply elements
x^2+8x*2+1=0
Wy multiply elements
x^2+16x+1=0
a = 1; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·1·1
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{7}}{2*1}=\frac{-16-6\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{7}}{2*1}=\frac{-16+6\sqrt{7}}{2} $

See similar equations:

| y^2-26y+81=0 | | x/13-9=4 | | -11/2x+2=4 | | 26=v/5-13 | | y-1.7=8.69 | | 3k+18=7k-6 | | m=-8/(-2/12) | | 93-v=162 | | x+2+72=90 | | 124x0.25=31 | | 5/17=19/x+3 | | 150x+100x+(250-80x)=540 | | 3.4x-2.6=x-0.9 | | -13x=19 | | -6x/1=-2/7x | | -2=3s | | 3x+9=7x-30 | | x/2=720 | | (-5/3)x=-15 | | 4x+(22x-2)=180 | | 1/2x=720 | | (6x+2)+(6x-2+8x)=180 | | 10x=235 | | 5d-7-d=-4 | | m+(-17)=19 | | 600000=4x-2.5x | | 10q+49=39 | | (2x+20)+(x+30)=180 | | x^2-5x=46 | | (4c-3)(c=5) | | 2.82=2^x | | (0.99+x)-(0.99x)=1 |

Equations solver categories