(1/4)(a+10)=5

Simple and best practice solution for (1/4)(a+10)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(a+10)=5 equation:



(1/4)(a+10)=5
We move all terms to the left:
(1/4)(a+10)-(5)=0
Domain of the equation: 4)(a+10)!=0
a∈R
We add all the numbers together, and all the variables
(+1/4)(a+10)-5=0
We multiply parentheses ..
(+a^2+1/4*10)-5=0
We multiply all the terms by the denominator
(+a^2+1-5*4*10)=0
We get rid of parentheses
a^2+1-5*4*10=0
We add all the numbers together, and all the variables
a^2-199=0
a = 1; b = 0; c = -199;
Δ = b2-4ac
Δ = 02-4·1·(-199)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{199}}{2*1}=\frac{0-2\sqrt{199}}{2} =-\frac{2\sqrt{199}}{2} =-\sqrt{199} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{199}}{2*1}=\frac{0+2\sqrt{199}}{2} =\frac{2\sqrt{199}}{2} =\sqrt{199} $

See similar equations:

| 317=31.7a | | 20-(2y+5)=5y+1 | | (x+4)(3x+2)=28 | | 12y+5=5+5(-4y+2) | | 2158=83a | | 14n=-64 | | 3v=1+4v | | X-3x+2x=-2x-3-1 | | y=23000(1.05^30) | | 1/3y-3=1/2 | | -20-3n=-4(n+3)-3n | | 36/k=12 | | 2g+10=22 | | -6(2x+7)=-12x-42 | | 4(x+8)+3x=38 | | 3x-1=1x3x | | -2v-1=1-v | | 3(10)(24)=(10+x)(24+x) | | 6x+4+4x+8=9x-3 | | 22=16/x | | |6x-4|=|3x+5| | | 51=6k+3 | | 24.2-(x)(24.2)=14.2 | | 16=6-2y | | 2x-6=-3x-21 | | 6+x/18=1 | | 2=8+n/8 | | 6x+18+2x-4=8x-16+8 | | n+3/4=2 | | -3x+5=7x-9 | | 4=n-4/3 | | 6(4-3x)=2(12-9x) |

Equations solver categories