If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)(6x+1)=8
We move all terms to the left:
(1/4)(6x+1)-(8)=0
Domain of the equation: 4)(6x+1)!=0We add all the numbers together, and all the variables
x∈R
(+1/4)(6x+1)-8=0
We multiply parentheses ..
(+6x^2+1/4*1)-8=0
We multiply all the terms by the denominator
(+6x^2+1-8*4*1)=0
We get rid of parentheses
6x^2+1-8*4*1=0
We add all the numbers together, and all the variables
6x^2-31=0
a = 6; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·6·(-31)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{186}}{2*6}=\frac{0-2\sqrt{186}}{12} =-\frac{2\sqrt{186}}{12} =-\frac{\sqrt{186}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{186}}{2*6}=\frac{0+2\sqrt{186}}{12} =\frac{2\sqrt{186}}{12} =\frac{\sqrt{186}}{6} $
| 8x=3x×15 | | v/6+10.1=9.1 | | 5p+37=5+2(p+7) | | (4*3)/(2+2)=(16-9)*n/10 | | 3x-8(2x=3)=-6(2x+5) | | -8y-2y=-20 | | -11x-4=x | | c=50(6)-20 | | 3w=3*w | | h/6 −1=−3 | | -15+3x=-60-6x | | y-(-20)=6 | | 155x+230=10x-15 | | 3z+1=-8 | | 2n+24*5n+16=180 | | 7(v-4)+2=-82 | | -4x-(-5)=-31 | | 3(6x+8)-2=-1/2(-16x-20)2x | | x+x+3x=35 | | 6x-1-4x=x+7 | | 3(4x+1)=9x-10 | | 4x+8x=8x+2x-12 | | 2(3x-6)=5x+12 | | v+2+5v=-34 | | -(-4x+16)=4 | | -7y-(9y+3)=6 | | -(7x-9)+4=-8-1/2(-4x-4) | | 11(-40+n)=187 | | 7(x+5)=27+7x | | 12x-18=72 | | 8/5w^2=160 | | z-(-4)=-15 |