(1/4)(4x+8)=5

Simple and best practice solution for (1/4)(4x+8)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(4x+8)=5 equation:



(1/4)(4x+8)=5
We move all terms to the left:
(1/4)(4x+8)-(5)=0
Domain of the equation: 4)(4x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(4x+8)-5=0
We multiply parentheses ..
(+4x^2+1/4*8)-5=0
We multiply all the terms by the denominator
(+4x^2+1-5*4*8)=0
We get rid of parentheses
4x^2+1-5*4*8=0
We add all the numbers together, and all the variables
4x^2-159=0
a = 4; b = 0; c = -159;
Δ = b2-4ac
Δ = 02-4·4·(-159)
Δ = 2544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2544}=\sqrt{16*159}=\sqrt{16}*\sqrt{159}=4\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{159}}{2*4}=\frac{0-4\sqrt{159}}{8} =-\frac{4\sqrt{159}}{8} =-\frac{\sqrt{159}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{159}}{2*4}=\frac{0+4\sqrt{159}}{8} =\frac{4\sqrt{159}}{8} =\frac{\sqrt{159}}{2} $

See similar equations:

| 129x+41x=180 | | 14x-15=69 | | 129xx41x=180 | | 14=3x+32 | | -105=-5(1-5n) | | 10a+10=20 | | t/17=-22 | | 3a=6=21 | | 135-w=194 | | x2+11x+11=4x | | -2(7x-7)=-14x-14 | | 3(x+-4)=2(-2x+1) | | 1355-w=194 | | 6(5r-3)=-198 | | -3x+6=13 | | 4b-9=5 | | t/2-3+5=0 | | 10(50)+15x=1,010 | | 6x-48=4x-16 | | t/2-3t+5=0 | | -9=6n+3n | | 0.25(6x1)=x+1.2 | | -45+z=-54 | | 3)3y-10=6 | | -4+5x=2 | | -11s-7=15 | | 3z+9z=-30 | | 2|x+1|/3=6 | | 6(5x-4)-7=30x-31 | | -3(3m-10)-7=-5(m-1)+3m | | -3x-5x+10=-6 | | 13=1-6b-6b |

Equations solver categories