(1/4)(3x+7)=4

Simple and best practice solution for (1/4)(3x+7)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(3x+7)=4 equation:



(1/4)(3x+7)=4
We move all terms to the left:
(1/4)(3x+7)-(4)=0
Domain of the equation: 4)(3x+7)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(3x+7)-4=0
We multiply parentheses ..
(+3x^2+1/4*7)-4=0
We multiply all the terms by the denominator
(+3x^2+1-4*4*7)=0
We get rid of parentheses
3x^2+1-4*4*7=0
We add all the numbers together, and all the variables
3x^2-111=0
a = 3; b = 0; c = -111;
Δ = b2-4ac
Δ = 02-4·3·(-111)
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{37}}{2*3}=\frac{0-6\sqrt{37}}{6} =-\frac{6\sqrt{37}}{6} =-\sqrt{37} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{37}}{2*3}=\frac{0+6\sqrt{37}}{6} =\frac{6\sqrt{37}}{6} =\sqrt{37} $

See similar equations:

| 15=5(y-84) | | F(p)=5p+17 | | F(x)=-3x^2+4x-8 | | -15c+1+7c=3-8c | | 2∕3·q=18 | | 0=0.45y | | 1/3k+6=12 | | 7(x-3)+6=12x+38 | | 19x+11-15x=-49 | | -6(y-84)=-54 | | 5x=3,12 | | -4K+10k-k-7k=-20 | | 0.2(2x-15)=0.1(4x-30) | | 6.5g+9=2.5g+33 | | –1=7+x | | x*12000=2630000 | | -5x+13=-16 | | 9(u+5)=99 | | 7+9p=-1+p | | –1=7+v | | N-5=9+6n+1 | | -.2(3x-25)=-.1x+7 | | 6x^2+12x-228=0 | | 38+8r=1-3(3r-4) | | 7+9p=1+p | | 6(c-79)=78 | | 5w+2+2w=10 | | 19x-28-7x+35=21 | | 10+u+10=7u-10 | | -2n/3=48 | | -32-g=48 | | -57=-9+4x |

Equations solver categories