(1/3x)-9=14x-7-13x

Simple and best practice solution for (1/3x)-9=14x-7-13x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3x)-9=14x-7-13x equation:



(1/3x)-9=14x-7-13x
We move all terms to the left:
(1/3x)-9-(14x-7-13x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)-(x-7)-9=0
We get rid of parentheses
1/3x-x+7-9=0
We multiply all the terms by the denominator
-x*3x+7*3x-9*3x+1=0
Wy multiply elements
-3x^2+21x-27x+1=0
We add all the numbers together, and all the variables
-3x^2-6x+1=0
a = -3; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·(-3)·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{3}}{2*-3}=\frac{6-4\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{3}}{2*-3}=\frac{6+4\sqrt{3}}{-6} $

See similar equations:

| Y=-1/2(x^2-4)(x^2-1) | | 4x+9=2x+ | | F(x)=13–4x | | 12x(x+8)=264 | | -3(11-7x)+54=4 | | 8(6t-5)-25=-27 | | 2x-1=7x-9,x= | | f(5)=4×+7 | | 1/5(3(x-1)+9=x | | 8()4p+1=32p+8 | | -12.3=n+24.5 | | 6x+3=0x+4 | | 6x+7=0x+4 | | -x+6x-12=5(x-6)-5 | | -21-5x=-2x+6 | | 0.18y+0.03(y+4000)=1170 | | 10a=408-71 | | 21+2(m-4)=2 | | C^2-18c=-108 | | 9x+5=1x+0 | | 2x-1=7x-9 | | -8.9-r=19.12 | | ​4x−14+3x=1614x−14+3x=161 | | 8x-4x+1=2 | | 2x^2+8x-7=2x(x+17/2) | | 3+4(5−2x6)+12(2+4)+1=0 | | 6x+2-4x=4+2x-8 | | 2x-3-x=2+2x-5 | | 8x+9=2x+5 | | 19.12=-8.9r | | 8x+0=2x+5 | | -2x-1+5x=4+3x-1 |

Equations solver categories